G2-M2-Lesson 1

1. The length of the picture of the shovel is about \(8\) centimeters.

2. The length of a screwdriver is 19 centimeters. The handle is 5 centimeters long. What is the length of the top of the screwdriver?

\[
5 + _
\]

The top of the screwdriver is 14 centimeters.
G2-M2-Lesson 2

1. The picture of the eraser is about 4 centimeters long.

I can cut out the centimeter cube and use the mark and move forward strategy to measure the picture. I have to mark where the cube ends before I can move it forward again.

2. John used a centimeter cube and the mark and move forward strategy to measure these pieces of tape. Use his work to answer the following questions.

How long is Tape A? 6 centimeters long. How long is Tape B? 8 centimeters long.

Which tape is shorter? Tape A

The total length of Tapes A and B is 14 centimeters.

Since John measured without any gaps or overlaps, I know that the distance between the pencil marks is the same length! I can count the length units for each piece of tape.
G2-M2-Lesson 3

Use your centimeter ruler to answer the following questions.

1. The picture of the animal track is about \(4 \) cm long.

2. Measure the lengths of sides A, B, and C. Write each length on the line.

 Side A
 \[4 \text{ cm} \]

 Side B
 \[9 \text{ cm} \]

 Side C
 \[8 \text{ cm} \]

 How much shorter is Side C than Side B? \(1 \) cm

 \[9 - 8 = 1 \]

I know how to accurately line up my centimeter ruler to measure the picture of the animal track. Since my hash marks are labeled, I don't have to count each mark; I can easily see that the picture is 4 centimeters long.

I can use my centimeter ruler to measure the length of each side. Then, I can compare the lengths of two sides by subtracting.
G2-M2-Lesson 4

1. Circle cm (centimeter) or m (meter) to show which unit you would use to measure the length of each object.

 Length of a glue stick cm or m
 Length of a door cm or m
 Length of the teacher’s desk cm or m
 Length of a marker cm or m

 I know that the door and teacher’s desk are longer than 100 centimeters, so I can measure with my meter stick.

2. Fill in the blanks with cm or m.

 The height of the building is 12 m.
 The length of the blue thread was 8 cm longer than the red thread.
 The runner broke the record for the 500 m dash.

 I can use my number sense here. I don’t think a runner would break a record for a 500 centimeter dash; that’s only 5 meter sticks long! The answer must be in meters.

3. Use the centimeter ruler below to find the length (from one mark to the next) of the shape.

 The shape is 4 cm long.

 The endpoints of the shape line up to the 2 cm and 6 cm mark on the ruler. I can begin at 2 centimeters and count up 4 centimeters until I get to 6 centimeters.
G2-M2-Lesson 5

1. Name two things in school that you would measure in meters. Estimate their lengths.

<table>
<thead>
<tr>
<th>Item</th>
<th>Estimated Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>chalkboard</td>
<td>4 meters</td>
</tr>
<tr>
<td>reading corner rug</td>
<td>3 meters</td>
</tr>
</tbody>
</table>

I know that the length from the doorknob to the floor is about 1 meter. So I think the reading corner rug is about 3 of those lengths. The rug looks shorter than the chalkboard, so I can estimate that the rug is about 3 meters long.

2. Choose the best length estimate for each object.

 a. Bulletin board

 - 2 m or 35 cm

 b. Scissors

 - 13 cm or 43 cm

 c. Top of a student desk

 - 18 cm or 62 cm

I know that a 3-ring binder is about 30 centimeters long. I can picture 2 of those binders fitting across the length of my desktop, which would be about 60 centimeters long. So, 62 centimeters is closer to 60 centimeters than 18 centimeters.

3. Measure the length of the line below using your pinky finger. Write your estimate.

Estimate: 7 cm

Since the width of my pinky finger is about 1 centimeter, I can estimate that the length of the line is about 7 centimeters.
G2-M2-Lesson 6

1. Measure each set of lines in centimeters, and write the length on the line. Complete the comparison sentences.

Line A

Line B

Line C

<table>
<thead>
<tr>
<th>Line A</th>
<th>Line B</th>
<th>Line C</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 cm</td>
<td>5 cm</td>
<td>8 cm</td>
</tr>
</tbody>
</table>

Lines A, B, and C are about 28 cm combined.

Line C is about 7 cm shorter than Line A.

Since Line A is 15 cm long and Line C is 8 cm long, I know that Line C is shorter. I can subtract: 15 - 8 = 7. Line C is 7 cm shorter than Line A.

2. Line D is 45 cm long. Line E is 70 cm long. Line F is 1 m long.

Line E is 25 cm longer than Line D.

Line E doubled is 40 cm longer than Line F.

I know that 1 meter equals 100 centimeters. If I double Line E, then it will be 140 cm long because 70 + 70 = 140. 140 centimeters is 40 centimeters more than 100 centimeters.

3. Lanie measured the height of her little brother. He is 52 cm tall.

How much taller is a meter stick than her brother? 48 cm.

\[
\begin{align*}
52 + _ &= 100 \\
52 + 8 &= 60 \\
60 + 40 &= 100 \\
8 + 40 &= 48
\end{align*}
\]

This is like a missing addend problem. I can solve by adding on. I want to get to 100 because a meter stick is 100 cm long. I know that 52 + 8 will get me to the friendly number 60. Then, 60 + 40 = 100. And, 8 + 40 = 48.
G2-M2-Lesson 7

1. Measure each line with one small paper clip, using the mark and move forward method. Then, measure in centimeters using a ruler.

 Line A
 3 paper clips 9 cm
 Line B
 1 paper clips 3 cm

 Line A is about 2 paper clips longer than Line B.

 Line B doubled is about 3 cm shorter than Line A because I know 6 + 3 = 9.

2. Christina measured Line C with quarters and pennies.

 Line C
 Why did Christina need more pennies than quarters to measure Line C?

 Since the quarter is bigger, it takes fewer quarters to measure the same line. If the length unit
 is smaller, like a penny, then you need a greater number of pennies to measure the line.

 If the unit size is bigger, like quarters, then you need fewer units. If the unit size is smaller, like pennies, then you need more units. Coins aren't a good measurement tool. Centimeters are much more reliable because each length unit is the same!
G2-M2-Lesson 8

1. A

B

Line A is ___ cm. \[14 - 6 = 8 \] Line B is ___ cm. \[11 - 2 = 9 \]

Lines A and B are ___ cm. \[8 + 9 = 17 \]

Line A is ___ cm (longer) than Line B.

Since Line B starts at 2 cm, I can take away 2 cm from where the line ends at 11 cm. So, the line is 9 cm.

2. A cricket jumped 5 centimeters forward and 9 centimeters back and then stopped. If the cricket started at 23 on the ruler, where did the cricket stop? Show your work on the broken centimeter ruler.

\[23 + 5 = 28 \]
\[28 - 9 = 18 \]
\[18 + 1 = 19 \]

I can use addition and subtraction to solve. I can start at 23 and count on 5. Then, I can hop back 9 centimeters or subtract 9. The cricket stops at 19 cm.
3. All of the parts of the path below are equal length units. Fill in the lengths of each side.

\[4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 8 + 8 + 8 + 8 + 16 + 16 = 32 \]

The path is **32** length units long.

How many more parts would you need to add for the path to be 40 length units long? **2** parts

I know that the path is 32 length units. I can think 32 + ___ = 40. The unknown is 8 length units. But the question asks for the number of parts. I know that each part is 4 length units. So, 2 more parts, 4 + 4, equals 8.
G2-M2-Lesson 9

1. Tommy completed the chart below by first estimating the measurement around three body parts and then finding the actual measurement with his meter strip.

<table>
<thead>
<tr>
<th>Body Part Measured</th>
<th>Estimated Measurement in Centimeters</th>
<th>Actual Measurement in Centimeters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neck</td>
<td>25 cm</td>
<td>31 cm</td>
</tr>
<tr>
<td>Wrist</td>
<td>13 cm</td>
<td>17 cm</td>
</tr>
<tr>
<td>Head</td>
<td>50 cm</td>
<td>57 cm</td>
</tr>
</tbody>
</table>

What is the difference between the longest and shortest measurements?

\[40 \text{ cm} \quad 57 - 17 = 40 \]

Draw a tape diagram comparing the measurements of Tommy’s neck and wrist.

```
Neck  31 cm
Wrist 17 cm
```

I can draw a tape diagram to compare measurements. The longer bar represents the length around Tommy’s neck. The shorter bar represents the length around his wrist. I must remember to draw the second bar directly underneath the first. I have to make sure that they line up perfectly so that the starting points are at the same place.

\[31 - 17 = ___ \]
\[
\frac{11}{20} \quad 20 - 17 = 3
\]
\[11 + 3 = 14 \]

I can describe the difference by writing the expression \(31 - 17\). Then, I can draw a number bond and use the take from ten strategy to solve.
2. Measure the two paths below with your meter strip and string.

Path A

Path B

Path A is ___ cm long.

Path B is ___ cm long.

Together, Paths A and B measure ___ cm.

Path A is ___ cm (shorter/longer) than Path B.

I can lay my string straight along each path. Then, I can lay it along the meter strip to figure out the actual length in centimeters.

14 + 13 = 27

14 - 13 = 1
G2-M2-Lesson 10

Use the Read-Draw-Write (RDW) process to solve. Draw a tape diagram for each step.

Jesse's tower of blocks is 30 cm tall. Sarah's tower is 9 cm shorter than Jesse's tower. What is the total height of both towers?

Step 1: Find the height of Sarah's tower.

\[
\begin{align*}
J & \quad 30 \text{ cm} \\
S & \quad ? \\
\quad \quad \quad \quad \quad \quad 9 \text{ cm}
\end{align*}
\]

\[
\begin{align*}
30 - 9 &= 20 + 1 = 21 \\
20 & \quad 10 \\
10 - 9 &= 1 \\
20 + 1 &= 21 \quad \text{Sarah's tower is 21 cm.}
\end{align*}
\]

Step 2: Find the total height of both towers.

\[
\begin{align*}
J & \quad 30 \text{ cm} \\
S & \quad 21 \text{ cm} \\
\quad \quad \quad \quad \quad \quad ?
\end{align*}
\]

\[
\begin{align*}
30 + 21 &= ? \\
30 + 21 &= 51 \quad \text{The total height of both towers is 51 cm.}
\end{align*}
\]