G4-M1-Lesson 1

1. Label the place value charts. Fill in the blanks to make the following equations true. Draw disks in the place value chart to show how you got your answer, using arrows to show any regrouping.

\[10 \times 3 \text{ ones} = \underline{30} \text{ ones} = \underline{3} \text{ tens} \]

<table>
<thead>
<tr>
<th>thousands</th>
<th>hundreds</th>
<th>tens</th>
<th>ones</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10 \times 3 \text{ ones} is represented by drawing 3 disks in the ones column and then drawing 9 more ones for each disk. \(10 \times 3 \text{ ones} = 30 \text{ ones}.\)

\[\begin{array}{c}
\downarrow \\
\text{I draw an arrow to the tens column to show I am regrouping 10 ones as 1 ten. 30 ones is the same as 3 tens.}
\end{array} \]

Lesson 1: Interpret a multiplication equation as a comparison.
2. Complete the following statements using your knowledge of place value. Then, use pictures, numbers, or words to explain how you got your answer.

600 hundreds is the same as 6 thousands.

<table>
<thead>
<tr>
<th>thousands</th>
<th>hundreds</th>
<th>tens</th>
<th>ones</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

I know 1 thousand is the same as 10 hundreds. So, 6 thousands is the same as 60 hundreds.

3. Gabby has 50 books in her room. Her mom has 10 times as many books in her office. How many books does Gabby’s mom have? Use numbers or words to explain how you got your answer.

5 tens \times 10 = 50 tens

Gabby’s mom has 500 books in her office.

50 tens is the same as 5 hundreds. I can write my answer in standard form within a sentence to explain my answer.
G4-M1-Lesson 2

1. Label and represent the product or quotient by drawing disks on the place value chart.
 a. \(10 \times 3\) thousands = \(30\) thousands = \(3\) ten thousands

<table>
<thead>
<tr>
<th>millions</th>
<th>hundred thousands</th>
<th>ten thousands</th>
<th>thousands</th>
<th>hundreds</th>
<th>tens</th>
<th>ones</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 Just as in Lesson 1, I group each ten with a circle and draw an arrow to show I am regrouping 30 thousands as 3 ten thousands.

 | | | | | | | |

b. \(2\) thousands \(÷ 10\) = \(20\) hundreds \(÷ 10\) = \(2\) hundreds

<table>
<thead>
<tr>
<th>millions</th>
<th>hundred thousands</th>
<th>ten thousands</th>
<th>thousands</th>
<th>hundreds</th>
<th>tens</th>
<th>ones</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 I can't divide 2 thousands disks into equal groups of \(10\). So, I rename 2 thousands as 20 hundreds. Now, I can divide 20 hundreds into equal groups of \(10\).
2. Solve for the expression by writing the solution in unit form and in standard form.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Unit Form</th>
<th>Standard Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3 tens 2 ones) $\times 10$</td>
<td>30 tens 20 ones</td>
<td>320</td>
</tr>
</tbody>
</table>

I multiply each unit, the tens and the ones, by 10.

3. Solve.

840 matches are in 1 box. 10 times as many matches are in a package. How many matches in a package?

84 tens $\times 10$ is 840 tens or 84 hundreds.

840 $\times 10 = 8,400$

8,400 matches are in a package.

I can use unit form to make the multiplication easier and to verify my answer in standard form.
G4-M1-Lesson 3

1. Rewrite the following number, including commas where appropriate:
 30030033003 __30,030,033,003__
 I use a comma after every 3 digits from the right to indicate the periods, or grouping of units—ones, thousands, millions, and billions.

2. Solve each expression. Record your answer in standard form.

 I can add 5 tens + 9 tens = 14 tens.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Standard Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 tens + 9 tens</td>
<td>140</td>
</tr>
</tbody>
</table>

 14 tens is the same as 10 tens and 4 tens. I can bundle 10 tens to make 1 hundred. 14 tens is the same as 140.

3. Represent each addend with place value disks in the place value chart. Show the composition of larger units from 10 smaller units. Write the sum in standard form.

 3 thousands + 14 hundreds = ___4,400___

<table>
<thead>
<tr>
<th>millions</th>
<th>hundred thousands</th>
<th>ten thousands</th>
<th>thousands</th>
<th>hundreds</th>
<th>tens</th>
<th>ones</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

After drawing 3 thousands and 14 hundreds disks, I notice that 10 hundreds can be bundled as 1 thousand. Now, my picture shows 4 thousands 4 hundreds, or 4,400.
4. Use digits or disks on the place value chart to represent the following equations. Write the product in standard form.

\[(5 \text{ ten thousands } 3 \text{ thousands}) \times 10 = \underline{530.000}\]

How many thousands are in your answer? \underline{530 \text{ thousands}}

The place value to the left represents 10 times as much, so I can draw an arrow and label it "\(\times 10 \)."

<table>
<thead>
<tr>
<th>millions</th>
<th>hundred thousands</th>
<th>ten thousands</th>
<th>thousands</th>
<th>hundreds</th>
<th>tens</th>
<th>ones</th>
</tr>
</thead>
</table>

\[\times 10\]

3 ten thousands is 10 times more than 3 thousands. 5 hundred thousands is 10 times more than 5 ten thousands. So, \((5 \text{ ten thousands } 3 \text{ thousands}) \times 10\) is \(530,000\).
G4-M1-Lesson 4

1.
 a. On the place value chart below, label the units, and represent the number 43,082.

<table>
<thead>
<tr>
<th>millions</th>
<th>hundred thousands</th>
<th>ten thousands</th>
<th>thousands</th>
<th>hundreds</th>
<th>tens</th>
<th>ones</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 b. Write the number in word form.
 43,082 = forty-three thousand, eighty-two

 I read 43,082 to myself. I write the words that I say. I add commas to separate the periods of thousands and ones, just as I do when I write numerals.

 c. Write the number in expanded form.
 40,000 + 3,000 + 80 + 2

 I write the value of each digit in 43,082 as an addition expression. The 4 has a value of 4 ten thousands, which I write in standard form as 40,000. 43,082 = 40,000 + 3,000 + 80 + 2.
2. Use pictures, numbers, and words to explain another way to say 39 hundred.

Another way to say 39 hundred is 3 thousand, 9 hundred. I can write 3,900, and I draw 39 hundreds disks as 3 thousands disks and 9 hundreds disks.

<table>
<thead>
<tr>
<th>millions</th>
<th>hundred thousands</th>
<th>ten thousands</th>
<th>thousands</th>
<th>hundreds</th>
<th>tens</th>
<th>ones</th>
</tr>
</thead>
</table>

I know 10 hundreds is the same as 1 thousand. I can bundle 30 hundreds to make 3 thousands.
G4-M1-Lesson 5

1. Label the units in the place value chart. Draw place value disks to represent each number in the place value chart. Use $<$, $>$, or $=$ to compare the two numbers. Write the correct symbol in the circle.

$$503,421 \quad > \quad 350,491$$

I record the comparison symbol for greater than.

<table>
<thead>
<tr>
<th>millions</th>
<th>hundred thousands</th>
<th>ten thousands</th>
<th>thousands</th>
<th>hundreds</th>
<th>tens</th>
<th>ones</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

I record the value of each digit using place value disks, placing 503,421 in the top half and 350,491 in the bottom half of the place value chart. I can clearly see and compare the unit with the greatest value—hundred thousands. 5 hundred thousands is greater than 3 hundred thousands. 503,421 is greater than 350,491.

2. Compare the two numbers by using the symbols $<$, $>$, or $=$. Write the correct symbol in the circle.

six hundred two thousand, four hundred seventy-three $<$ 600,000 + 50,000 + 2,000 + 700 + 7

It helps me to solve if I write both numbers in standard form.

$$602,473 < 652,707$$

Since the value of the largest unit is the same, I compare the next largest unit—the ten thousands. Zero ten thousands is less than five ten thousands. So, 602,473 is less than 652,707. I record the comparison symbol for less than to complete my answer.
3. Jill has $1,462, Adam has $1,509, Cristina has $1,712, and Robin has $1,467. Arrange the amounts of money in order from greatest to least. Then, name who has the most money.

<table>
<thead>
<tr>
<th>thousands</th>
<th>hundreds</th>
<th>tens</th>
<th>ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

$1,712 > $1,509 > $1,467 > $1,462

Cristina has the most money.
G4-M1-Lesson 6

1. Label the place value chart. Use place value disks to find the sum or difference. Write the answer in standard form on the line.

a. 100,000 less than six hundred thirty thousand, five hundred seventeen is 530,517.

<table>
<thead>
<tr>
<th>millions</th>
<th>hundred thousands</th>
<th>ten thousands</th>
<th>thousands</th>
<th>hundreds</th>
<th>tens</th>
<th>ones</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>**</td>
<td>**</td>
<td></td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
</tbody>
</table>

After modeling 630,517, I cross off 1 hundred thousand disk. 100,000 less than 630,517 is 530,517.

b. 260,993 is 10,000 more than 250,993.

<table>
<thead>
<tr>
<th>millions</th>
<th>hundred thousands</th>
<th>ten thousands</th>
<th>thousands</th>
<th>hundreds</th>
<th>tens</th>
<th>ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>**</td>
<td>**</td>
<td>**</td>
<td></td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
</tbody>
</table>

To model 260,993 in comparison to 250,993, I add 1 ten thousand disk. 60,000 is 10,000 more than 50,000. Therefore, 260,993 is 10,000 more than 250,993.

2. Fill in the blank for this equation:

17,082 - 1,000 = 16,082

There are 17 thousands in 17,082. 1 thousand less than 17 thousand is 16 thousands.
3. Fill in the boxes to complete the patterns. Explain in pictures, numbers, or words how you found your answers.

| 245,975 | 345,975 | 445,975 | 545,975 | 645,975 | 745,975 |

Student Response 1:

I see that the hundred thousand unit increases. The other units remain the same. In the first number, there are 2 hundred thousands. Then, there are 4 hundred thousands and 6 hundred thousands. I can fill in the boxes with 3 hundred thousands, 5 hundred thousands, and 7 hundred thousands. Each number in the pattern increases by 1 hundred thousand each time.

I answer the question, “Are the numbers in the pattern growing or shrinking? By how much?”

Student Response 2:

The numbers increase by 100,000 each time.

<table>
<thead>
<tr>
<th>hundred thousands</th>
<th>ten thousands</th>
<th>thousands</th>
<th>hundreds</th>
<th>tens</th>
<th>ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>5</td>
<td>9</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>9</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>5</td>
<td>9</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>5</td>
<td>9</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>5</td>
<td>9</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>5</td>
<td>9</td>
<td>7</td>
<td>5</td>
</tr>
</tbody>
</table>

245,975 + 100,000 = 345,975
345,975 + 100,000 = 445,975
445,975 + 100,000 = 545,975
545,975 + 100,000 = 645,975
645,975 + 100,000 = 745,975

I quickly write numerals instead of number disks. I can see clearly that the hundred thousands increase. The other values don’t change.

I write a series of number sentences to show the same change each time. The rule of the pattern is “add 100,000.”
G4-M1-Lesson 7

1. Round to the nearest thousand. Use the number line to model your thinking.
 a. \(3,941 \approx 4,000 \)
 b. \(53,269 \approx 53,000 \)

 - There are 3 thousands in 3,941. 1 more thousand is 4 thousands. I mark 3,000 and 4,000 as the endpoints of a vertical number line.
 - A vertical number line allows me to line up the digits in the numbers I record. It also allows me to more easily think, "Round up or round down?"
 - 53,269 is less than 53,500. 53,269 is closer to 53,000 than 54,000. 53,269 rounded to the nearest thousand is 53,000.

2. In 2013, the family vacation cost $3,809. In 2014, the family vacation cost $4,699. The family budgeted about $4,000 for each vacation. In which year did the family stay closer to their budget? Round to the nearest thousand. Use what you know about place value to explain your answer.

 - I draw two number lines, one for each year.

 - In 2013, they stayed closer to their budget. I know because $3,809 rounded to the nearest thousand is $4,000, and $4,699 rounded to the nearest thousand is $5,000. In 2014, the family went over their budget by about $1,000.
G4-M1-Lesson 8

1. Complete each statement by rounding the number to the given place value. Use the number line to show your work.

 a. 41,899 rounded to the nearest ten thousand is 40,000

 I ask myself, "How many ten thousands in 41,899? What is 1 more ten thousand?"

 I label 41,899 on the number line and notice it is less than 45,000.

 b. 267,072 rounded to the nearest hundred thousand is 300,000

 I know that there are 2 hundred thousands in 267,072. One more hundred thousand is 3 hundred thousands.

 Halfway between 200,000 and 300,000 is 250,000.
2. 982,510 books were downloaded in one year. Round this number to the nearest hundred thousand to estimate how many books were downloaded in one year. Use a number line to show your work.

There are 9 hundred thousands in 982,510. 1 more hundred thousand is 10 hundred thousands, or 1 million. I label my endpoints 900,000 and 1,000,000. Halfway is 950,000.

About 1 million books were downloaded in one year.

3. Estimate the difference by rounding each number to the given place value.

519,240 – 339,705

a. Round to the nearest hundred thousand.

500,000 – 300,000 = 200,000

b. Round to the nearest ten thousand.

520,000 – 340,000 = 180,000

Thinking in unit language makes this subtraction easy: 520 thousands minus 340 thousands equals 180 thousands.
G4-M1-Lesson 9

1. Round to the nearest thousand.
 a. $7,598 \approx 8,000$
 b. $301,409 \approx 301,000$
 c. Explain how you found your answer for Part (b).

 There are 301 thousands in 301,409. One more thousand is 302 thousands. Halfway between 301 thousands and 302 thousands is 301 thousands 5 hundreds. 301,409 is less than 301,500. Therefore, 301,409 rounded to the nearest thousand is 301,000.

2. Round to the nearest ten thousand.
 a. $73,999 \approx 70,000$
 b. $65,002 \approx 70,000$
 c. Explain why the two problems have the same answer. Write another number that has the same answer when rounded to the nearest ten thousand.

 Any number equal to or greater than 65,000 and less than 75,000 will round to 70,000 when rounded to the nearest ten thousand. 65,002 is greater than 65,000, and 73,999 is less than 75,000. Another number that would round to 70,000 is 68,234.
Solve the following problems using pictures, numbers, or words.

3. About 700,000 people make up the population of Americatown. If the population was rounded to the nearest hundred thousand, what could be the greatest and least number of people who make up the population of Americatown?

All numbers less than 750,000 round to 700,000 when rounding to the nearest hundred thousand. Therefore, 749,999 is the largest number that rounds to 700,000.

The greatest number of people that could make up the population is 749,999. I know because it is 1 fewer than 750,000. The least number of people that could make up the population is 650,000.
G4-M1-Lesson 10

1. Round 745,001 to the nearest
 a. thousand: $\underline{745,000}$
 b. ten thousand: $\underline{750,000}$
 c. hundred thousand: $\underline{700,000}$

I remember from Lesson 7 to ask myself, "Between what two thousands is 745,001?" I try to picture the number line in my head.

I remember from Lesson 8 to find how many ten thousands and how many hundred thousands are in 745,001. Then, add one more of that unit to find the endpoints.

Solve the following problem using pictures, numbers, or words.

2. 37,248 people subscribe to the delivery of a local newspaper. To decide about how many papers to print, what place value should 37,248 be rounded to so each person receives a copy? Explain.

37,248 should be rounded to the nearest ten thousand or the nearest ten. Extra papers will be printed, but if I round to the nearest hundred thousand, thousand, or hundred, there won't be enough papers printed.

Drawing number lines helps to prove my written answer.
G4-M1-Lesson 11

1. Solve the addition problems using the standard algorithm.

 a. \[\begin{array}{c}
 5 \quad 1 \quad 2 \quad 2 \\
 + \quad 2 \quad 4 \quad 5 \quad 7 \\
 \hline
 7 \quad 5 \quad 7 \quad 9
 \end{array} \]

 No regroupings here! I just add like units. 2 ones plus 7 ones is 9 ones. I put the 9 in
 the ones column as part of the sum. Then, I continue to add the number of
 units of tens, the hundreds, and the thousands.

 b. \[\begin{array}{c}
 5 \quad 1 \quad 2 \quad 4 \\
 + \quad 2 \quad 4 \quad 5 \quad 7 \\
 \hline
 7 \quad 5 \quad 8 \quad 1
 \end{array} \]

 I have to regroup ones. 4 ones + 7 ones = 11 ones. 11 ones equals 1 ten on one. I record 1
 ten in the tens place on the line. I record 1 one in the ones column as
 part of the sum.

 c. \[\begin{array}{c}
 \text{38,192} \quad \text{6,387} \quad \text{241,458} \\
 + \quad \text{3} \quad \text{8} \quad \text{1} \quad \text{9} \quad \text{2} \\
 \hline
 \text{42,069} \quad \text{6} \quad \text{3} \quad \text{8} \quad \text{7} \\
 + \quad \text{2} \quad \text{4} \quad \text{1} \quad \text{4} \quad \text{5} \quad \text{8} \\
 \hline
 \text{44,519} \quad \text{6} \quad \text{3} \quad \text{8} \quad \text{7}
 \end{array} \]

 The order of the addends doesn’t matter as long as like units are lined up.

2. Draw a tape diagram to represent the problem. Use numbers to solve, and write your answer as a
 statement.

 In July, the ice cream stand sold some ice cream cones. 3,907 were vanilla. 2,568 were not
 vanilla. How many cones did they sell in July?

 I can draw a tape diagram. I know the two parts, but I don’t
 know the whole. I can label the unknown with a variable, \(C \).

 \[\begin{align*}
 \text{C} & \\
 3,907 & + \quad 2,568 = \text{C}
 \end{align*} \]

 \[\begin{array}{c}
 3,907 \quad + \quad 2,568 \\
 + \quad 3,907 \\
 \hline
 6,475
 \end{array} \]

 The ice cream stand sold 6,475 cones in July.
G4-M1-Lesson 12

Estimate and then solve. Model the problem with a tape diagram. Explain if your answer is reasonable.

1. There were 4,806 more visitors to the zoo in the month of July than in the month of June. June had 6,782 visitors. How many visitors did the zoo have during both months?

\[6,782 + 4,806 = 11,628 \]

Since the problem states the relationship between June and July, I can draw two tapes. I make July’s tape longer because there were more visitors in July. I partition July’s tape into two parts: one part for the number of people in June and the other part for 4,806 more visitors.

a. About how many visitors did the zoo have during June and July?

\[7,000 + 7,000 + 5,000 = 19,000 \]

The zoo had about 19,000 visitors during June and July.

To estimate the total, I round each number to the nearest thousand and add those numbers together.

b. Exactly how many visitors did the zoo have during June and July?

\[
\begin{align*}
6, & 782 \\
6, & 782 \\
+ & 4,806 \\
\hline
1, & 8370
\end{align*}
\]

When I look at my tape diagram, I see that I don’t have to solve for July to find the total. This saves me a step.

The zoo had exactly 18,370 visitors during June and July.

c. Is your answer reasonable? Compare your estimate to the answer. Write a sentence to explain your reasoning.

Sample Response: My answer is reasonable because my estimate of 19,000 is only about 600 more than the actual answer of 18,370. My estimate is greater than the actual answer because I rounded each addend up to the next thousand.
2. Emma's class spent four months collecting pennies.
 a. During Month 3, the class collected 1,211 more pennies than they did during Month 2. Find the total number of pennies collected in four months.

<table>
<thead>
<tr>
<th>Month</th>
<th>Pennies Collected</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4,987</td>
</tr>
<tr>
<td>2</td>
<td>8,709</td>
</tr>
<tr>
<td>3</td>
<td>8,709</td>
</tr>
<tr>
<td>4</td>
<td>8,192</td>
</tr>
</tbody>
</table>

\[
-5,000 + 9,000 + 9,000 + 1,000 + 8,000 = 32,000
\]

I add in unit form: 5 thousands + 9 thousands + 9 thousands + 1 thousand + 8 thousands = 32 thousands. 32 thousand is an estimate of the total number of pennies collected in four months.

To find the total pennies collected in the four months, I could solve for Month 3 and then add all of the months together to solve for \(P \). Instead, I just add the value of each of the tapes together. The tape diagram shows me how to solve this in one step, not two.

The total number of pennies collected in four months was 31,808.

b. Is your answer reasonable? Explain.

Sample Response: My answer is reasonable. 31,808 is only about 200 less than the estimate of 32,000.
G4-M1-Lesson 13

1. Use the standard algorithm to solve the following subtraction problems.
 a. \[
 \begin{array}{c}
 6,567 \\
 -1,457 \\
 \hline
 5,110 \\
 \end{array}
 \]
 I look across the top number to see if I can subtract. I have enough units, so no regroupings! I just subtract like units. 7 ones minus 7 ones is 0 ones. I continue to subtract the number of units of tens, hundreds, and thousands.

 b. \[
 \begin{array}{c}
 4,137 \\
 -2,457 \\
 \hline
 4,080 \\
 \end{array}
 \]
 Now, I have 4 hundreds. I show this by crossing off the 5 and writing a 4 in the hundreds place instead. 10 tens + 3 tens = 13 tens. I show this by crossing off the 3 tens and writing 13 in the tens place instead.

 c. 3,532 – 921
 \[
 \begin{array}{c}
 2,15 \overline{3} \\
 \hline
 9 \overline{2} \\
 \hline
 2,611 \\
 \end{array}
 \]
 Just like in Lesson 11, I write the problem in vertical form, being sure to line up the units.

2. What number must be added to 23,165 to result in a sum of 46,884?
 \[
 23,165 + n = 46,884
 \]
 To solve a word problem, I use RDW: Read, Draw, Write. I read the problem. I draw a picture, like a tape diagram, and I write my answer as an equation and a statement.

 \[
 \begin{array}{c}
 46,884 \\
 \hline
 23,165 \quad n \\
 \hline
 23,719
 \end{array}
 \]
 \[
 \begin{array}{c}
 7,14 \overline{4} \\
 \hline
 8 \overline{4} \\
 \hline
 7,19
 \end{array}
 \]
 \[
 \begin{array}{c}
 4,6 \overline{8} \\
 \hline
 1,65 \\
 \hline
 2,3 \overline{7} \\
 \hline
 2,3719
 \end{array}
 \]
 \[
 23,719 \text{ must be added to } 23,165.\]
Draw a tape diagram to model the problem. Use numbers to solve, and write your answer as a statement. Check your answer.

3. Mr. Swanson drove his car 5,654 miles. Mrs. Swanson drove her car some miles, too. If they drove 11,965 miles combined, how many miles did Mrs. Swanson drive?

\[
11,965 - 5,654 = M
\]

\[
\begin{array}{c}
11 \\
9 \\
6 \\
5
\end{array}
\]

\[
\begin{array}{c}
6, \\
3, \\
1, \\
1
\end{array}
\]

\[
\begin{array}{c}
5, \\
6, \\
5, \\
4
\end{array}
\]

\[
\begin{array}{c}
6, \\
3, \\
1, \\
1
\end{array}
\]

\[
\begin{array}{c}
1, \\
9, \\
6, \\
5
\end{array}
\]

Mrs. Swanson drove 6,311 miles.

To check my answer, I add the difference to the known part. It equals the whole, so I subtracted correctly.

Lesson 13: Use place value understanding to decompose to smaller units once using the standard subtraction algorithm, and apply the algorithm to solve word problems using tape diagrams.
G4-M1-Lesson 14

1. Use the standard algorithm to solve the following subtraction problems.

 a. \[
 \begin{array}{c}
 15 \\
 \underline{- 6} \\
 9
 \end{array}
 \]

 Am I ready to subtract? No! I don't have enough tens, thousands, or ten thousands.

 b. \[
 \begin{array}{c}
 17 \\
 \underline{- 8} \\
 9
 \end{array}
 \]

 After decomposing, I'm ready to subtract!

 There are not enough tens to subtract 4 tens.

 Once my values are greater in every place, I'm ready to subtract.

2. Stella had 542,000 visits to her website. Raquel had 231,348 visits to her website. How many more visits did Stella have than Raquel?

 \[
 \begin{array}{c}
 542,000 \\
 \underline{- 231,348} \\
 310,652
 \end{array}
 \]

 I draw a tape diagram. Stella had more visits, and so her tape is longer.

 Stella had 310,652 more visits than Raquel.

Lesson 14: Use place value understanding to decompose to smaller units up to three times using the standard subtraction algorithm, and apply the algorithm to solve word problems using tape diagrams.

©2015 Great Minds. eureka-math.org
G4-M1-WHI-1.3.0-07.2015
G4-M1-Lesson 15

Use the standard subtraction algorithm to solve the problem below.

1. \[
\begin{array}{c}
6000 \\
- \ 72649
\end{array}
\]

I am not ready to subtract. I must regroup.

Sample Student A Response:

\[
\begin{array}{c}
99139 \\
5101031010 \\
6000400 \\
- \ 72649
\end{array}
\]

I work unit by unit, starting with the ones. I can rename 4 hundreds as 3 hundreds 10 tens. Then, I rename 10 tens as 9 tens 10 ones. I'll continue to decompose until I am ready to subtract.

Sample Student B Response:

\[
\begin{array}{c}
13 \\
59993910 \\
600400 \\
- \ 72649
\end{array}
\]

I need more ones. I unbundle 40 tens as 39 tens 10 ones.

I need more than 3 hundreds to subtract 6 hundreds. I can rename the 600 thousands as 599 thousands 10 hundreds. 10 hundreds plus 3 hundreds is 13 hundreds.
Use a tape diagram and the standard algorithm to solve the problem below. Check your answer.

2. The cost of the Johnston's new home was $200,000. They paid for most of it and now owe $33,562. How much have they already paid?

\[
\begin{array}{cc}
\$200,000 \\
\hline
P \\
\$33,562
\end{array}
\]

\[\$200,000 - \$33,562 = P\]

Sample Student A Response:

\[
\begin{array}{cccccccc}
9 & 9 & 9 & 9 & 1 & 1 & 0 & 0 \\
\hline
2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
1 & 6 & 6 & 4 & 3 & 8 & 2 & 2
\end{array}
\]

There are a lot of decompositions!

Sample Student B Response:

\[
\begin{array}{cccccccc}
1 & 9 & 9 & 9 & 9 & 1 & 0 & 0 \\
\hline
2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
1 & 6 & 6 & 4 & 3 & 8 & 2 & 2
\end{array}
\]

I rename 20,000 tens as 19,999 tens 10 ones.

\[
\begin{array}{cccccccc}
1 & 6 & 6 & 4 & 3 & 8 \\
+ & 3 & 3 & 5 & 6 & 2 \\
\hline
2 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
\]

I check my answer by adding the two parts. The sum is equal to the cost of the new home. My answer is correct!

The Johnstons have already paid $166,438.
G4-M1-Lesson 16

1. In its three months of summer business, the local ice cream stand had a total of $94,326 in sales. The first month’s sales were $24,314, and the second month’s sales were $30,867.

- I label what I know.

\[\text{$94,326$} \]

\[\begin{array}{ccc}
$24,314$ & $30,867$ & N
\end{array} \]

a. Round each value to the nearest ten thousand to estimate the sales of the third month.

\[\begin{array}{l}
$24,314 \approx $20,000 \\
$30,867 \approx $30,000 \\
$94,326 \approx $90,000
\end{array} \]

The sales of the third month were about $40,000.

To estimate the sales of the third month, I subtract the sum from two months from the total amount.

b. Find the exact amount of sales of the third month.

\[
\begin{array}{c}
2 & 4 & 3 & 1 & 4 \\
\hline
+ & 3 & 0 & 8 & 6 & 7 \\
\hline
& 5 & 5 & 1 & 8 & 1
\end{array}
\]

When I add the sales of the first and second month, I regroup on the line.

\[
\begin{array}{c}
8 & 14 & 2 & 12 \\
\hline
9 & 4 & 3 & 2 & 6 \\
\hline
3 & 9 & 1 & 4 & 5
\end{array}
\]

The exact amount of sales of the third month was $39,145.

c. Use your answer from part (a) to explain why your answer in part (b) is reasonable.

My answer of $39,145 is reasonable because it is close to my estimate of $40,000. The difference between the actual answer and my estimate is less than $1,000.
2. In the first month after its release, 55,316 copies of a best-selling book were sold. In the second month after its release, 16,427 fewer copies were sold. How many copies were sold in the first two months? Is your answer reasonable?

Sample Student A Response:

\[C = 55,316 - 16,427 \]
\[C = 38,889 \]

I subtract to find the actual number of copies sold in the second month.

Then, I add the number of copies of the first and second month together to find the total.

\[B = 55,316 + 38,889 \]
\[B = 94,205 \]

94,205 copies were sold in the first two months.

I round to the nearest ten thousand. My answer is reasonable. It is about 6,000 less than my estimate. I would expect this difference because I rounded each number up to the nearest ten thousand.

Sample Student B Response:

\[B = 55,316 + 55,316 - 16,427 \]
\[B = 110,632 - 16,427 \]
\[B = 94,205 \]

To find the total number copies I can add two units of 55,316 and then subtract 16,427.

\[110,632 \approx 111,000 \]
\[16,427 \approx 16,000 \]
\[111,000 - 16,000 = 95,000 \]

I round to the nearest thousand. My answer is really close to my estimate! When I round to a smaller place value unit, I often get an estimate closer to the actual answer.
G4-M1-Lesson 17

Draw a tape diagram to represent each problem. Use numbers to solve, and write your answer as a statement.

1. Saisha has 1,025 stickers. Evan only has 862 stickers. How many more stickers does Saisha have than Evan?

 \[M = 1,025 - 862 \]
 \[M = 163 \]

 Saisha has 163 more stickers than Evan.

2. Milk Truck B contains 3,994 gallons of milk. Together, Milk Truck A and Milk Truck B contain 8,789 gallons of milk. How many more gallons of milk does Milk Truck A contain than Milk Truck B?

 \[A = 8,789 - 3,994 \]
 \[A = 4,795 \]

 Milk Truck A contains 801 more gallons of milk than Milk Truck B.
3. The length of the purple streamer measured 180 inches. After 40 inches were cut from it, the purple streamer was twice as long as the blue streamer. At first, how many inches longer was the purple streamer than the blue streamer?

I use unit language to help me solve. The purple streamer is now 140 inches long.

\[2B = 18 \text{ tens} - 4 \text{ tens}\]
\[2B = 14 \text{ tens} \text{ or } 140\]

At first, the purple streamer was 110 inches longer than the blue streamer.

\[B = 14 \text{ tens} \div 2\]
\[B = 7 \text{ tens}\]
\[B = 70\]

\[L = 180 - 70\]
\[L = 18 \text{ tens} - 7 \text{ tens}\]
\[L = 11 \text{ tens}\]
\[L = 110\]

I divide to find the length of the blue streamer. I subtract the length of the blue streamer from the original length of the purple streamer.
G4-M1-Lesson 18

Draw a tape diagram to represent each problem. Use numbers to solve, and write your answer as a statement.

1. Bridget wrote down three numbers. The first number was 7,401. The second number was 4,610 less than the first. The third number was 2,842 greater than the second. What is the sum of her numbers?

 \[
 \begin{align*}
 \text{First} & : 7,401 \\
 \text{Second} & : 4,610 \\
 \text{Third} & : 2,842
 \end{align*}
 \]

 To find the second number, I subtract.

 \[
 \begin{array}{c}
 7,401 \\
 \underline{-4,610} \\
 2,791
 \end{array}
 \]

 To find the third number, I add 2,842 to the value of the second number.

 \[
 \begin{array}{c}
 2,791 \\
 +2,842 \\
 5,633
 \end{array}
 \]

 The sum of Bridget’s numbers is 15,825.

2. Mrs. Sample sold a total of 43,210 pounds of mulch. She sold 13,305 pounds of cherry mulch. She sold 4,617 more pounds of birch mulch than cherry. The rest of the mulch sold was maple. How many pounds of maple mulch were sold?

 \[
 \begin{align*}
 \text{Cherry} & : 13,305 \\
 \text{Birch} & : 43,210 \\
 \text{Maple} & : 4,617
 \end{align*}
 \]

 This problem is different than the other. Here, I know the total, but I don’t know one of the parts.

 \[
 \begin{array}{c}
 13,305 \\
 +4,617 \\
 18,922
 \end{array}
 \]

 I don’t know how long the tape for the maple mulch should be, so I estimate.

 \[
 \begin{array}{c}
 43,210 \\
 -13,305 \\
 29,905 \\
 -4,617 \\
 25,288
 \end{array}
 \]

 \[M = 43,210 - 31,227 \quad M = 11,983\]

 11,983 pounds of maple mulch were sold.
1. Using the diagram below, create your own word problem. Solve for the value of the variable, T.

There are 28,596 **people who work for**

Company A. There are 26,325 more **people who work for Company B than Company A**.

How many **people work for the two companies in all**?

After analyzing the tape diagram, I create a context for a word problem and fill in the blanks. I write "how many in all" because the total, T, is unknown.

$$
\begin{align*}
\text{Company B} &= 28,596 + 26,325 \\
&= 54,921 \\
\text{T} &= \text{Company A} + \text{Company B} \\
&= 28,596 + 26,325 \\
&= 54,921
\end{align*}
$$

83,517 **people work for the two companies in all**.

2. Use the following tape diagram to create a word problem. Solve for the value of the variable, A.

I analyze the tape diagram. I find a context, and write a word problem based on what is known and what is unknown. I label the parts.

Mr. W had 3 bank accounts with a total balance of $100,324. He had $24,841 in his third account and $12,952 more in his second account than in his third account. What was the balance of Mr. W's first account?

Mr. W's first account had a balance of $37,690.